If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-20b-21=0
a = 1; b = -20; c = -21;
Δ = b2-4ac
Δ = -202-4·1·(-21)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-22}{2*1}=\frac{-2}{2} =-1 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+22}{2*1}=\frac{42}{2} =21 $
| 5*1,25^x=20 | | (x+9)+(2x-111=) | | (x+9+2x-111=) | | 3(5x–1)=2(x+6) | | 100+20/100=x | | n/8=56 | | n=568 | | (3/4)^x=64/27 | | (u-3)*8=80 | | 1/3(m-4)=9 | | y-3/2+5=14 | | 2/5x-4+3/5x=6 | | 10y×70=210 | | X³-3x²-33x+35=O | | (x=2x-12)=255 | | (5x/3)–4=(2x/5) | | 〖5x〗^2−10=35 | | x=34x+3 | | x=3.4x+3 | | -3+6=5x+8 | | 2z/9-1=10 | | 9x+23=50 | | 5x+(8x+4)+15=180 | | 49-2=q | | 5x+(8x+14)+15=180 | | 3(6+3x)=127 | | 118-p=68 | | 57-w=49 | | y=14000*1.06^22 | | 93=63-c | | y+23=57 | | y+13+y=51=2y+13=51 |